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Abstract The time evolution equation for the probability density function of spin orienta-
tions in the phase space representation of the polar and azimuthal angles is derived for the
nonaxially symmetric problem of a quantum paramagnet subjected to a uniform magnetic
field of arbitrary direction. This is accomplished by first rotating the coordinate system into
one in which the polar axis is collinear with the field vector, then writing the reduced den-
sity matrix equation in the new coordinate system as an explicit inverse Wigner-Stratonovich
transformation so that the phase space master equation may be derived just as in the axially
symmetric case [Yu.P. Kalmykov et al., J. Stat. Phys. 131:969, 2008]. The properties of this
equation, resembling the corresponding Fokker-Planck equation, are investigated. In particu-
lar, in the large spin limit, S → ∞, the master equation becomes the classical Fokker-Planck
equation describing the magnetization dynamics of a classical paramagnet in an arbitrarily
directed uniform external field.
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1 Introduction

Phase space representations of quantum mechanical evolution equations provide a formal
means of treating quantum effects in dynamical systems linking transparently to the classi-
cal representations, thereby allowing one to calculate quantum corrections to classical distri-
bution functions [1, 2]. Such representations which are generally based on the coherent state
representation of the density matrix introduced by Glauber and Sudarshan and widespread
in quantum optics [2, 3] may also be applied to spin systems (e.g., [4–17]). They then al-
low one to analyse quantum spin relaxation using a master equation for a quasi-probability
distribution function W(ϑ,ϕ, t) of spin orientations in a phase (here configuration) space
(ϑ,ϕ); ϑ and ϕ are the classically meaningful polar and azimuthal angles. Thus mapping
of the quantum spin dynamics onto c-number quasi-probability density evolution equations
clearly shows how these equations reduce to the Fokker-Planck equation in the classical
limit [7–9, 15–17]. The phase space distribution function for spins having been introduced
by Stratonovich [18] for closed systems, was extensively developed both for closed and
open spin systems [4, 5, 7–28]. It is entirely analogous to the translational Wigner distribu-
tion W(x,p, t) in the phase space of positions and momenta (x,p) [29], which is a certain
Fourier transform corresponding to a quasi-probability representation of the density ma-
trix operator ρ̂(t). However, particular differences arise because of the angular momentum
commutation relations, e.g., the Wigner function takes the form of a finite linear combina-
tion of the spherical harmonics. Nevertheless the phase space distribution (Wigner) func-
tion W(ϑ,ϕ, t) of spin orientations in a configuration space, just as the Wigner function
W(x,p, t) for the translational motion of a particle, enables the expected value 〈Â〉(t) of a
quantum spin operator Â to be calculated via the corresponding c-number (or Weyl symbol)
function A(ϑ,ϕ). Thus quantum mechanical averages involving the spin density matrix may
be calculated just as classical ones which is naturally suited to the calculation of quantum
corrections [2]. Moreover, the formalism is easy to implement because the diffusion-like
equation form of the master equations governing the time evolution of phase space distrib-
utions enables powerful computational techniques originally developed for the solution of
classical Fokker-Planck equations for the rotational Brownian motion of classical magnetic
dipoles (e.g., continued fractions, mean first passage times, etc. [30, 31]) to be seamlessly
carried over into the quantum domain [15–17, 32–39].

We stress that both the phase space and density matrix representations, although having
outwardly different forms, are entirely equivalent [17, 40, 41]. Now several other quan-
tum, semiclassical, and classical methods for the description of spin dynamics already ex-
ist besides the phase space (generalized coherent state) [4–14] treatment, e.g., the reduced
density matrix [42, 43], the stochastic Liouville equation [4, 5, 44], the Langevin equa-
tion [30]. In general, however, phase space methods map quantum mechanical evolution
equations for the (reduced) density matrix for spins onto a c-number space. Thus they have
an obvious advantage over the operator equations in studying the quantum/classical divide
since the phase space representation of the density operator, is rendered in powers of the
inverse spin value S−1. Nevertheless, phase space methods for spins have hitherto been al-
most exclusively used in quantum optics and very little attention has been paid to other
spin systems. For example, the explicit master equation for the phase space distribution
function W(ϑ,ϕ, t) for the axially symmetric problem of a paramagnet of arbitrary S in an
external constant uniform magnetic field H applied along the Z axis (i.e., the Hamiltonian
βĤS = −ξ ŜZ) has been virtually the only spin system considered until recently [4, 5, 7,
8, 10–15] with the sole exception of Refs. [16, 17], where uniaxial anisotropy was also in-
cluded, so that βĤS = −ξ ŜZ −σ Ŝ2

Z and so the problem remains axially symmetric. Thus the
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diagonal terms of the density matrix always decouple from the non-diagonal ones and only
the former partake in the time evolution which is not so for nonaxially symmetric problems
[16, 17]. Here ŜZ is the Z-component of the spin operator Ŝ, ξ = β�ω0, ω0 = γH is the
precession (Larmor) frequency, γ is the gyromagnetic ratio, σ is the anisotropy constant,
β = 1/(kT ) is the inverse thermal energy, and � is Planck’s reduced constant.

We emphasize that in order to determine the relevant phase space master equation (by
the Wigner-Stratonovich transformation as detailed in [16]), one must first determine the
evolution equation for the reduced spin density matrix for each particular spin Hamiltonian
unlike the situation for point particles where a canonical form of that equation exists re-
gardless of the form of the Hamiltonian. Now in order to write the evolution equation, one
must determine the collision kernel matrix representing the interaction between the spin
and bath. This gives rise to considerable difficulties in the evaluation of the commutators of
spin operators and the density matrix and the corresponding phase space representations for
nonaxially symmetric Hamiltonians, where nondiagonal elements of the density matrix now
partake in the time evolution, which are the most interesting cases. Hence a new approach
using a coordinate system, in which the density matrix can be diagonalized, is necessary. In
order to illustrate this, we shall treat the simplest possible nonaxially symmetric problem.
Thus we shall study the nonaxially symmetric, time-independent, Hamiltonian ĤS , corre-
sponding to a single spin in a uniform external field H with an arbitrary direction in space,
so that

βĤS = −βγ �Ŝ · H = −ξXŜX − ξY ŜY − ξZŜZ, (1)

where ξX , ξY , ξZ and ŜX , ŜY , ŜZ are, respectively, the Cartesian components of the dimen-
sionless magnetic field vector ξ = βγ �H and the spin operator Ŝ.

2 Evolution Equation for the Reduced Density Matrix

We write the total Hamiltonian corresponding to a spin interacting with a heat bath as [4, 5,
7, 44]

Ĥ = ĤS + ĤSB + ĤB, (2)

where ĤS , ĤSB , ĤB are the Hamiltonians of the spin, the spin-bath interaction, and the bath
respectively. The spin-bath interaction Hamiltonian ĤSB is [7, 16, 45]

ĤSB = −�γ Ŝ · ĥ†, (3)

where ĥ is the random noise field operator characterizing the collision damping (due to the
bath) incurred by the precessional motion of the spin and is essentially the bath variable, and
the symbol † denotes the Hermitian conjugate. It is unnecessary to write explicitly the bath
Hamiltonian, since we are only interested in the dynamics of the spin.

Now the evolution equation for the reduced density matrix ρ̂ is given by the quantum
Liouville equation from which the bath degrees of freedom can be projected out. Hence we
have the Nakajima-Zwanzig equation concerning the spin [16], from which two commonly
used approximations stem, namely that the spin-bath coupling gives rise to a Markov process
and that we have weak spin-bath interactions. Under these assumptions, the reduced master
equation for an arbitrary Hamiltonian is [4, 5, 7, 16, 44]

∂ρ̂(t)

∂t
+ i

�

[
ĤS, ρ̂(t)

] = St{ρ̂(t)}, (4)
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where the collision kernel matrix St{ρ̂(t)} characterizing the spin-bath interaction is given
by

St{ρ̂(t)} = −(�2ZB)−1
∫ ∞

0
dτ TrB

{[
ĤSB, e−i(ĤS+ĤB )τ/�

[
ĤSB, ρ̂

eq

B ρ̂(t)
]
ei(ĤS+ĤB )τ/�

]}
.

(5)
Here ρ̂

eq

B is the equilibrium density matrix of the bath which in general is nondiagonal unlike
the axially symmetric case and ZB is the corresponding partition function. Equation (4)
describes the evolution of the reduced density matrix of spins in contact with the thermal
bath. The collision kernel in the form of (5), with the spin-bath interaction Hamiltonian
explicitly given by (3), is selected because it represents the direct quantum analogue of the
Fokker-Planck equation for the rotational diffusion of a classical spin since we are now
dealing with white noise operators.

We now specialize to a spin in an arbitrarily directed uniform field. We can then rewrite
the spin Hamiltonian (1) as

βĤS = −ξ Ŝ · u†
H = −ξ

1∑

μ=−1

u
μ

H Ŝμ, (6)

where Ŝ0 = ŜZ , Ŝ±1 = ∓(ŜX ± iŜY )/
√

2 and u0
H = ξZ/ξ , u±1

H = ∓(ξX ∓ iξY )/(
√

2ξ) are,
respectively, the spherical components of the spin operator Ŝ and the unit vector u†

H =
(u+1

H ,u0
H ,u−1

H )T along the arbitrarily directed magnetic field H, upper and lower indices
denote contravariant and covariant components, correspondingly [46], and the transpose
symbol T is mapping a row-vector to a column-vector. The spherical components of u†

H

can in turn be expressed in terms of the polar and azimuthal angles ϑH and ϕH (the source
coordinates) specifying the orientation of the uniform magnetic field H in spherical polar
coordinates

u0
H = cosϑH , u±1

H = ∓ sinϑH e∓iϕH /
√

2, (7)

where ϑH = arccos ξZ/ξ and ϕH = arctan ξY /ξX . We can now reduce the problem to one
in which only the diagonal elements of the density matrix participate in the time evolution
by introducing a new coordinate system X′Y ′Z′ with the new polar axis Z′ directed along
the uniform magnetic field axis H instead of the field being in an arbitrary direction. In the
coordinate system X′Y ′Z′, the transformed spherical components Ŝ ′

μ of Ŝ′ may be related to

those of the operator Ŝ as [46]

Ŝ′ = ŜA or Ŝ ′
μ =

1∑

μ′=−1

Aμ′,μŜμ′ , (8)

where the matrix elements Aμ′,μ of the transformation matrix A are defined as

Aμ′,μ = D1
μ′,μ(ϕH ,ϑH ,0), (9)

DL
M,M ′(α,β, γ ) is the Wigner D function, and α,β, γ are the Euler angles [46]. In order

to obtain the transformation given by (8), we have used the property of the polarization
operators, T̂

(S)
L,M , that on transformation of the coordinate system, under rotations specified

by the Euler angles α,β, γ , the polarization operators transform as [46]

T̂
′(S)

L,M ′ =
∑

M

DL
M,M ′(α,β, γ )T̂

(S)
L,M, (10)
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where we have recalled that the spherical components of the spin operator can be represented
in terms of the T̂

(S)
L,M as [46]

Ŝμ = √
S(S + 1)(2S + 1)/3T̂

(S)

1,μ . (11)

Thus the spin Hamiltonian (6) can be written in the new coordinate system as

βĤ ′
S = −ξ Ŝ ′

0, (12)

which is of the same form as the Hamiltonian for the axially symmetric problem of a uniform
field applied along the polar axis as treated in [16] (with zero anisotropy).

Having transformed the Hamiltonian to the axially symmetric form given by (12), the
master equation (4) in the rotated coordinate system becomes (see Appendix A)

∂ρ̂ ′(t)
∂t

− iξ

�β

[
Ŝ ′

0, ρ̂
′(t)

] = D‖
([

Ŝ ′
0ρ̂

′(t), Ŝ ′
0

] + [
Ŝ ′

0, ρ̂
′(t)Ŝ ′

0

])

+ D⊥
(
eξ

[
Ŝ ′

+1ρ̂
′(t), Ŝ ′

−1

] + eξ
[
Ŝ ′

+1, ρ̂
′(t)Ŝ ′

−1

]

+ [
Ŝ ′

−1ρ̂
′(t), Ŝ ′

+1

] + [
Ŝ ′

−1, ρ̂
′(t)Ŝ ′

+1

])
, (13)

where D‖ and D⊥ are effective diffusion coefficients defined in Appendix A. This equa-
tion is of exactly the same form [15, 16] as the reduced density matrix evolution equation
for the axially symmetric Hamiltonian βĤS = −ξ ŜZ , where only the diagonal terms con-
tribute to the time evolution. We note that the commutators [Ŝ ′

0, ρ̂
′(t)Ŝ ′

0], [Ŝ ′
+1, ρ̂

′(t)Ŝ ′
−1],

and [Ŝ ′
−1, ρ̂

′(t)Ŝ ′
+1] in (13) are, respectively, the complex conjugates of [Ŝ ′

0ρ̂
′(t), Ŝ ′

0],
[Ŝ ′

+1ρ̂
′(t), Ŝ ′

−1], and [Ŝ ′
−1ρ̂

′(t), Ŝ ′
+1]. The collision kernel in (13) can also be rewritten in

compact vector form as

St{ρ̂ ′(t)} = 2Ŝ′ρ̂ ′(t)Eξ
+DŜ′† − Ŝ′Eξ

−DŜ′†ρ̂ ′(t) − ρ̂ ′(t)Ŝ′Eξ
−DŜ′†. (14)

Here D represents a diffusion tensor with elements

[D]μ′μ = δμ′μ[D‖δμ,0 + D⊥(1 − δμ,0)] (15)

and the matrices Eξ
+ and Eξ

− are

Eξ
± =

⎛

⎝
−eξ δ1,±1 − δ1,∓1 0 0

0 1 0
0 0 −eξ δ1,∓1 − δ1,±1

⎞

⎠ . (16)

Using the transformation given by (8), the collision term in (13) may be written in the
original coordinate system XYZ, as

St{ρ̂(t)} = D‖
1∑

μ′,μ′′=−1

D1
μ′,0(ϕH ,ϑH ,0)D1

μ′′,0(ϕH ,ϑH ,0)
([

Ŝμ′ ρ̂(t), Ŝμ′′
] + [

Ŝμ′ , ρ̂(t)Ŝμ′′
])

+ D⊥eξ

1∑

μ′,μ′′=−1

D1
μ′,+1(ϕH ,ϑH ,0)D1

μ′′,−1(ϕH ,ϑH ,0)

× ([
Ŝμ′ ρ̂(t), Ŝμ′′

] + [
Ŝμ′ , ρ̂(t)Ŝμ′′

])



594 Y.P. Kalmykov et al.

+ D⊥
1∑

μ′,μ′′=−1

D1
μ′,−1(ϕH ,ϑH ,0)D1

μ′′,+1(ϕH ,ϑH ,0)

× ([
Ŝμ′ ρ̂(t), Ŝμ′′

] + [
Ŝμ′ , ρ̂(t)Ŝμ′′

])
(17)

or alternatively in the vector form (cf. (9)).

St{ρ̂(t)} = 2ŜAρ̂(t)Eξ
+D(ŜA)† − ŜAEξ

−D(ŜA)†ρ̂(t) − ρ̂(t)ŜAEξ
−(ŜA)†. (18)

The collision kernel defined by (17) is rendered zero by the equilibrium spin density matrix
ρ̂eq = e−βĤS /ZS , where ZS = Tr{e−βĤS } is the partition function. This is most easily seen
in the new coordinate system, simply by direct substitution of the equilibrium spin density
matrix ρ̂ ′

eq = eξŜ′
0/ZS into the new master equation (13) and then using the operator equality

eξŜ′
0 Ŝ ′

±1e
−ξ Ŝ′

0 = e±ξ Ŝ ′
±1 (19)

to simplify the various commutators. Thus we have shown how the reduced density matrix
equation for the nonaxially symmetric problem of an arbitrarily directed uniform field may
be treated via a simple rotation of the coordinate system using the methods previously de-
veloped [13, 15] for the axially symmetric problem of a uniform field applied along the Z

axis.
The conditions for the validity of the reduced density matrix evolution so obtained have

been discussed in detail in Refs. [7, 10, 16] and may be briefly summarized as follows.
Essentially, that equation follows from the equation of motion of the reduced density ma-
trix in the rotating-wave approximation (familiar in quantum optics, where counter-rotating,
rapidly oscillating terms are averaged out) and applies in the narrowing limit case when the
correlation time τc of the random field acting on the spin satisfies the condition γHτc � 1,
where H is the averaged amplitude of the random magnetic field. Thus we implicitly im-
ply that the interactions between the spin and the heat bath are small enough to ensure the
validity of the weak coupling limit and that the correlation time characterizing the bath is
so short that the stochastic process originating in the bath is Markovian [5, 33]. Hence one
may assume Ohmic damping. These approximations may be used in the high temperature
limit, β|εm − εm±1| � 1, where εm, εm±1 are the energy eigenvalues. In the parameter range,
where the approximation fails (e.g., throughout the very low temperature region), more gen-
eral forms of the phase space and density matrix equations must be used (such as treated,
e.g., in Refs. [47–49]). Nevertheless, we still use the model based on the above approxi-
mation because despite many drawbacks it can qualitatively describe the relaxation in spin
systems. Moreover, the model can be regarded as the direct quantum generalization of the
Langevin formalism used by Brown in his theory of relaxation of classical spins [50, 51].

Having obtained the evolution equation (for the reduced density matrix) for this sim-
ple nonaxially symmetric problem we shall now illustrate how the corresponding master
equation in phase space can be obtained using the properties of the Wigner-Stratonovich
transformation and its inverse.

3 Wigner-Stratonovich Transformation of the Density Matrix Evolution Equation

First recall that phase space representations of quantum mechanical evolution equations
when applied to spin systems characterized by a Hamiltonian ĤS , allow one to analyse the
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spin relaxation using a master equation for a quasi-probability function W
(s)
S (ϑ,ϕ, t) of spin

orientations in a phase (here configuration) space (ϑ,ϕ) which is classically meaningful.
Here ϑ and ϕ are the polar and azimuthal angles, S is as before the spin size and the para-
meter (s) characterizes various quasi-probability functions of spins belonging to the SU(2)

dynamical symmetry group. The parameter values s = 0 and s = ±1 correspond to the
Berezin [19] and Stratonovich [18] contravariant and covariant functions, respectively (the
latter are directly related to the P and Q symbols appearing naturally in the coherent state
representation [2, 52]). We therefore seek an evolution equation for the Wigner distribution
function W

(s)
S (ϑ,ϕ, t), i.e., we desire an equation of the form

∂W
(s)
S

∂t
= LSW

(s)
S , (20)

where LS is a linear differential operator depending on ĤS . This equation will now be ex-
plicitly derived for our nonaxially symmetric problem by mapping onto phase space the
evolution equation (4) for the reduced density matrix with collision operator given by (17).
The first step is to simplify the various commutators using the properties of the polariza-
tion operators and spherical harmonics so that the terms involving them appear as inverse
Wigner-Stratonovich transformations [cf. (22) below] of differential operators acting on the
phase space distribution. (Speaking in a universal sense, the problem is to transform reduced
density matrix evolution equations of the generic form of (4) into the phase space represen-
tation.) The transformation to phase space may then be explicitly accomplished because
W

(s)
S (ϑ,ϕ, t) and ρ̂ are related via the bijective map [52]

W
(s)
S (ϑ,ϕ, t) = Tr{ρ̂(t)ŵs(ϑ,ϕ)}, (21)

ρ̂(t) = 2S + 1

4π

∫
ŵs(ϑ,ϕ)W

(−s)
S (ϑ,ϕ, t)d�, (22)

where the Wigner-Stratonovich operator (or kernel of the transformation) ŵs(ϑ,ϕ) is defined
as the finite linear combination of polarization operators

ŵs(ϑ,ϕ) =
√

4π

2S + 1

2S∑

L=0

L∑

M=−L

(C
S,S
S,S,L,0)

−sY ∗
L,M(ϑ,ϕ)T̂

(S)
L,M . (23)

Here Tr{ŵs} = 1 and [(2S + 1)/4π ] ∫ ŵsd� = Î (S) (Î (S) is the identity matrix), the asterisk
denotes the complex conjugate, YL,M(ϑ,ϕ) are the spherical harmonics [46], T̂

(S)
L,M are the

polarization operators [46], C
S,S
S,S,L,0 are the Clebsch-Gordan coefficients [46], and d� =

sinϑdϑdϕ. Either the density matrix ρ̂ or the phase space representation W
(s)
S (ϑ,ϕ, t) allow

one to calculate the average value of an arbitrary spin operator Â as

〈Â〉 = Tr{ρ̂Â}
or

〈Â〉 = 2S + 1

4π

∫
A(s)(ϑ,ϕ)W

(−s)
S (ϑ,ϕ, t)d�,

respectively, where A(s)(ϑ,ϕ) = Tr{Âŵs(ϑ,ϕ)} is the Weyl symbol of Â. We consider below
only W

(−1)
S [omitting everywhere the superscript −1 in W

(−1)
S , i.e., W

(−1)
S → WS] because
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[52] it alone satisfies the non-negativity condition required of a true probability density
function, viz., W(−1) ≥ 0. We remark in passing that the phase-space distribution WS may
be presented for arbitrary S in terms of a finite linear combination of the spherical harmonics
[52], namely,

WS(ϑ,ϕ, t) = 4π

2S + 1

2S∑

L=0

L∑

M=−L

〈Y ∗
L,M〉(t)YL,M(ϑ,ϕ), (24)

where 〈Y ∗
L,M〉(t) = 2S+1

4π

∫
Y ∗

L,M(ϑ,ϕ)WS(ϑ,ϕ, t)d� and Y ∗
L,M = (−1)MYL,−M . Equation

(24) obviously emphasizes the relationship with the conventional infinite series represen-
tation of the relevant classical Boltzmann distribution.

By writing the reduced density matrix evolution equation (4) in terms of the inverse trans-
formation (22) we then have implicitly in terms of the corresponding phase space distribution
WS(ϑ,ϕ, t) which essentially represents a mapping of (4) onto phase space

∫
ŵ1

∂WS

∂t
d� = − i

�

∫
[ĤS, ŵ1]WSd� +

∫
St{ŵ1}WSd�. (25)

The right-hand side of (25) is not yet however in the form of an inverse Wigner-
Stratononvich map as dictated by (22). Hence these terms for a given spin Hamiltonian
must first be written as the inverse of such a map with kernel ŵ1. Then an explicit phase
space master equation may be immediately extracted from the definition of the transforma-
tion (22) and from the result for the collision kernel (17) and (18). This is accomplished by
writing the commutators of both the deterministic and collision kernel terms as differential
operators acting on the Wigner distribution for spins WS in a manner such that after inte-
gration by parts ŵ1 appears as the kernel of the transformation. We remark that although
the procedure in determining the evolution equation for the Wigner function for spins is
formally similar to that for point particles undergoing translational motion, the problem for
spins is inherently much more difficult as the evolution equation for a given spin Hamil-
tonian must by derived in each particular case. As far as axially symmetric problems are
concerned, a detailed derivation has already been given in Ref. [16] for the axially sym-
metric problem of a uniaxial paramagnet in a uniform field parallel to the anisotropy axis.
We shall now generalize the results of that paper to treat the present nonaxially symmetric
problem using the rotated coordinate system described above.

Now, in the explicit transformation of the density matrix evolution equation into phase
space we need the relation between the polarization operators T̂

(S)
L,M and the spin operators

Ŝμ embodied in their commutator relation, namely, [46]

[Ŝμ, T̂
(S)
L,M ] = √

L(L + 1)C
L,M+μ

L,M,1,μT̂
(S)
L,M+μ. (26)

Furthermore, we also need the fact that the spherical components L̂μ of the angular momen-
tum operator L̂ = (L̂+1, L̂0, L̂−1) defined as [46]

L̂0 = −i
∂

∂ϕ
, L̂±1 = − 1√

2
e±iϕ

(
∂

∂ϑ
± i cotϑ

∂

∂ϕ

)
, (27)

act on the complex conjugate of the spherical harmonics Y ∗
L,M(ϑ,ϕ) as [46]

L̂μY ∗
L,M = −√

L(L + 1)C
L,M+μ

L,M,1,μY ∗
L,M+μ. (28)
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Hence, (26) and (28) with the Wigner-Stratonovich kernel (23) yield an identity for the
commutator, viz.

[Ŝμ, ŵ1] = −L̂μŵ1. (29)

This result can now be used to map the commutators in (25) to differential operators acting
in phase space. Next to find explicitly the terms Ŝμŵ1 and ŵ1Ŝμ (which arise from ĤS )
involved in the commutators in (25), one must expand the operator ŜμT̂

(S)
L,M as a sum of

polarization operators using (11) and the product formula of these operators, namely, [46]

T̂
(S)
L1,M1

T̂
(S)
L2,M2

=
2S∑

L=0

(−1)2S+L
√

(2L1 + 1)(2L2 + 1)

{
L1 L2 L

S S S

}
C

L,M
L1,M1,L2,M2

T̂
(S)
L,M, (30)

where
{

L1 L2 L

S S S

}
is Wigner’s 6j -symbol [46]. Now both the Wigner-Stratonovich operator

ŵ1 and the Wigner distribution for spins WS may be expanded as finite linear combinations
(L = 0 → 2S) of polarization operators and spherical harmonics respectively; see (23) and
(24). This property, the bijective nature of the transformation, and the orthogonality relations
of the spherical harmonics along with (29) and (30) now yield

∫
WSŜ0ŵ1d� = 1

2

∫
WS

[
2(S + 1) cosϑ + sinϑ

∂

∂ϑ
− L̂0

]
ŵ1d� (31)

and
∫

WSŜ±1ŵ1d� = −1

2

∫
WS

[
(1 ± cosϑ)L̂±1 + 1√

2
sinϑe±iϕ(L̂0 ± 2(S + 1))

]
ŵ1d�.

(32)
Following integrating by parts (see Appendix B of Ref. [16]), the above relations become
explicit inverse Wigner-Stratonovich transformations showing how the Ŝμŵ1 involved in
the commutators are related to their analogues in phase space. We can also represent the
transformation given by (31) and (32) in vector form as

Ŝρ̂(t) = 2S + 1

4π

∫
WS

[
(S + 1)u − 1

2
(∇ + L̂)

]
ŵ1d� (33)

which shows (again after integrating by parts) how Ŝρ̂(t) may be represented as a pure
inverse Wigner-Stratonovich transformation. Here the various vectors and operators are [46]

u = (u+1, u0, u−1), u±1 = ∓ sinϑe±iϕ/
√

2, u0 = cosϑ,

∇ = (∇+1,∇0,∇−1), ∇±1 = ∓e±iϕ

√
2

(
cosϑ

∂

∂ϑ
± i

1

sinϑ

∂

∂ϕ

)
, ∇0 = − sinϑ

∂

∂ϑ
.

In like manner the integral relations corresponding to the terms ŵ1Ŝμ in the commutator are
easily obtained using (29), so that they take the form

∫
WSŵ1Ŝμd� =

∫
WS(Ŝμ + L̂μ)ŵ1d�. (34)

Equation (34) can also be represented in vector form as

ρ̂(t)Ŝ = 2S + 1

4π

∫
WS

[
(S + 1)u − 1

2
(∇ − L̂)

]
ŵ1d�. (35)
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Now noting (33) and (35), substituting (18) into (25), and using integration by parts to
reduce them to pure inverse Wigner-Stratonovich transformations (again as in Appendix B
of [16]), we ultimately have the vector-valued master equation (which is the desired phase
space evolution equation corresponding to (4) with the collision kernel (18))

∂WS

∂t
− i

ξ

�β
(L̂ · u†

H )WS

= 1

2
(L̂A)D

{
E′ξ

+[(∇ + L̂ + 2Su)A]† − E′ξ
−[(∇ − L̂ + 2Su)A]†

}
WS, (36)

where the matrix A and the diffusion tensor D are defined by (9) and (15), respectively, and

E′ξ
± =

⎛

⎝
eξ δ1,±1 + δ1,∓1 0 0

0 1 0
0 0 eξ δ1,∓1 + δ1,±1

⎞

⎠ .

The vector valued master equation in phase space, (36), for the nonaxially symmetric prob-
lem of a uniform field of arbitrary direction can also obviously be presented in coordi-
nate terms avoiding vector differential operators altogether. These expressions are explicitly
given in Appendix B.

4 Properties of the Master Equation in Phase Space

The stationary phase space distribution function W
eq

S (ϑ,ϕ) corresponding to the canonical
density matrix ρ̂eq = e−βHS /ZS is given by [40]

W
eq

S (ϑ,ϕ) = Z−1
S [cosh(ξ/2) + sinh(ξ/2)(u · u†

H )]2S, (37)

where

(u · u†
H ) = sinϑ cosϕ sinϑH cosϕH + sinϑ sinϕ sinϑH sinϕH + cosϑ cosϑH

and

ZS = 2S + 1

4π

∫ π

0

∫ 2π

0

[
cosh(ξ/2) + sinh(ξ/2)(u · u†

H )
]2S

sinϑdϑdϕ

= sinh
[
(S + 1/2) ξ

]
/ sinh (ξ/2)

is the partition function. Because of our ansatz that the stationary solution of (13) is the
equilibrium spin density matrix ρ̂eq = e−βĤS /ZS , the phase space distribution W

eq

S (ϑ,ϕ)

from (37) is the stationary solution of the master equation (36). In the classical limit, β → 0,
S → ∞, and βS = const, the distribution W

eq

S (ϑ,ϕ) tends to the Boltzmann distribution,
i.e.,

2S + 1

4π
W

eq

S (ϑ,ϕ) → 1

Zcl

e−βV (ϑ,ϕ),

where βV (ϑ,ϕ) = −ξ ′(u · u†
H ) is the normalized free energy, ξ ′ = ξS, and Zcl =∫ π

0

∫ 2π

0 e−βV (ϑ,ϕ) sinϑdϑdϕ is the classical partition function.
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The phase space master equation (36) may be compared with previous results. First, we
consider a field applied along the Z-axis (i.e., the source coordinates are ϑH = ϕH = 0) so
that (36) reduces to

∂WS

∂t
= ξ

�β

∂WS

∂ϕ
+ D‖

∂2WS

∂ϕ2
+ D⊥

eξ − 1

2 sinϑ

[
cotϑ[cosϑ coth(ξ/2) + 1]∂

2WS

∂ϕ2

+ ∂

∂ϑ

(
2S sin2 ϑWS + sinϑ[coth(ξ/2) + cosϑ]∂WS

∂ϑ

)]
. (38)

This equation is simply that of Shibata and co-workers [7] obtained using the generalized
coherent states formalism which they transferred to the spherical polar coordinate represen-
tation. In the classical limit, β → 0, S → ∞, ξ ′ = ξS = const, (36) reduces to the relevant
Fokker-Planck equation describing the rotational diffusion of a classical spin, namely,

∂W

∂t
+ i

γ

μ
u · (∇W × ∇V )† = βD⊥∇(W∇†V ) + (L̂A)D(L̂A)†W, (39)

where ∇ = −e+1∇−1 +e0∇0 −e−1∇+1 is the gradient operator, e+1, e0, e−1 are the covariant
spherical basis vectors [46], and μ = γ �S is the magnetic moment associated with the spin.
Here we have used the following limits

lim
S→∞

ξ

�β

(
L̂ · u†

H

)
WS = −γ

μ
u · (∇W × ∇V ) ,

lim
S→∞

(L̂A)D
[(

E′ξ
+ + E′ξ

−
)

(L̂A)†
]
WS = 2(L̂A)D(L̂A)†W,

lim
S→∞

(L̂A)D
[(

E′ξ
+ − E′ξ

−
)

(∇A)†
]
WS = 0

and

lim
S→∞

S(L̂A)D[(E′ξ
+ − E′ξ

−)(uA)†]WS = βD⊥∇(W∇†V ).

Equation (39) simplifies for an isotropic spin diffusion (D⊥ = D‖) to give

∂W

∂t
+ i

γ

μ
u · (∇W × ∇V )† = D⊥[β∇(W∇†V ) + �W ], (40)

where

� = ∇ · ∇† = 1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+ 1

sin2 ϑ

∂2

∂ϕ2

is the angular part of the Laplacian operator.

5 Concluding Remarks

We have shown via a rotation of the coordinate system how one may derive a vector valued
master equation (36) for the time evolution of the phase space distribution function of the
simplest nonaxially symmetric spin system, namely a spin in an arbitrary directed uniform
field in contact with a thermal bath at temperature T . We have assumed throughout that
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the weak spin-bath coupling limit applies and that the correlation time characterizing the
bath is so short that the stochastic process originating in it is Markovian. Thus we have fre-
quency independent damping. The derivation of the master equation for the density matrix
was accomplished by first representing our spin system Hamiltonian in a new coordinate
system where the uniform magnetic field is directed along the new Z′ axis so that only the
diagonal terms participate in the time evolution [17]. It is then possible to return to the orig-
inal coordinate system using the properties of the Wigner D functions. Thus the nonaxially
symmetric problem has been effectively reduced to the solution of the axially symmetric
problem of the spin relaxation in a field applied along the Z′ axis of the new coordinate
system. The solution of the axially symmetric problem, allowing one to determine the re-
laxation of the magnetization as a function of spin size S, has been considered in detail in
Refs. [7, 10, 15–17] using both the phase space master equation and reduced density ma-
trix formulations. Each method yields exactly the same results for the magnetization and its
characteristic times although they have outwardly very different forms. Thus by virtue of
the rotation of the coordinate system the derivation of the nonaxially symmetric phase space
master equation is then effectively reduced to the evaluation of the various commutators per-
taining to the axially symmetric problem, in the new coordinate system. Hence, the phase
space master equation may be determined as before [7, 10, 15] by writing the reduced den-
sity matrix master equation (4) with kernel (18) in terms of the inverse Wigner-Stratonovich
transformation (22) and then explicitly writing the various commutators as differential op-
erators acting on the phase space distribution in a manner such that after integration by parts
ŵ1 appears as the kernel of the transformation. This reduction of the commutators to their
equivalent forms in phase space is accomplished using various properties of the spherical
components of the spin operator, the polarization operators, the spherical harmonics and the
angular momentum operator. Hence we have derived the master equation, in the compact
vector form (36). A particular advantage of that form is that it is now relatively easy to vi-
sualize how a new approach to nonaxially symmetrical problems by using a representation
in which only the diagonal terms in the density matrix contribute to the time evolution, may
be applied to more complicated situations. Examples are those posed by the Hamiltonian

βĤS = −ξ ŜX − σ Ŝ2
Z (41)

for a uniaxial spin system in a transverse field (known otherwise as the Lipkin-Meshkov
Hamiltonian [53, 54]) and those pertaining to biaxial and mixed anisotropy, namely

βĤS = −σ Ŝ2
Z + δ(Ŝ2

X − Ŝ2
Y ), (42)

βĤS = −σ1Ŝ
2
Z − σ2Ŝ

4
Z + χ(Ŝ4

+ + Ŝ4
−). (43)

We note that ĤS from (42) and (43) is commonly used to describe the magnetic properties of
an octanuclear iron(III) molecular cluster Fe8 and the dodecanuclear manganese molecular
cluster Mn12 [55], etc.

Having formulated the appropriate master equations in representation space for quantum
spin systems (molecular magnets, nanoclusters, etc.), these can be solved for the magne-
tization, dynamic susceptibility, switching field curves, hysteresis loops, etc. This can be
accomplished using the powerful matrix continued fraction method originally developed
[30] in the context of the Brown theory of reversal of the magnetization by thermal agitation
for classical superparamagnets [50, 51]. Here a very efficient method of solution of the cor-
responding Fokker-Planck equation for the distribution function of the magnetization vector



Master Equation in Phase Space for a Spin in an Arbitrarily Directed 601

orientation governing the stochastic dynamics of a classical spin comprises the determina-
tion of the statistical moments [expectation values of the spherical harmonics 〈YL,M〉(t)].
These in general satisfy differential-recurrence relations and allow one to evaluate desired
observables [30]. This method can also be applied to the quantum problem. The reason is
that the phase-space distribution WS(ϑ,ϕ, t) may be presented for arbitrary S in terms of
a finite linear combination of the spherical harmonics, namely, (24), which is valid for an
arbitrary spin system. The differential-recurrence relations for 〈YL,M〉(t) can be obtained
[17] by substituting the distribution function WS(ϑ,ϕ, t) from (24) into the master equation
(20) so that the latter becomes

d

dt
〈YL,M〉(t) =

∑

L′,M ′
b

L′,M ′
L,M 〈YL′,M ′ 〉(t), (44)

where b
L′,M ′
L,M are the Fourier coefficients which depend on the precise form of the Hamil-

tonian. In particular, solving (44) for 〈Y1,0〉(t) and 〈Y1,±1〉(t) and noting the correspondence
rules of the spin operators ŜX , ŜY , ŜZ and Weyl symbols SX , SY , SZ in the phase space [40],
one can calculate the longitudinal, 〈ŜZ〉(t), and transverse, 〈Ŝ±〉(t) = 〈ŜX〉(t) ± i〈ŜY 〉(t)
components of the magnetization as [17]

〈Ŝ±〉(t) = ∓√
8π/3(S + 1)〈Y1,±1〉(t) and 〈ŜZ〉(t) = √

4π/3(S + 1)〈Y1,0〉(t).

Equation (44) has been encountered in the theory of the magnetization relaxation of clas-
sical spins [30] and can be solved either by direct matrix diagonalization, involving the
calculation of the eigenvalues and eigenvectors of the system matrix, or by the computa-
tionally efficient (matrix) continued fraction method [30, 31]. Just as in the classical case,
having solved (44), one could study the transition of the relaxation from that of an elemen-
tary spin (S ∼ 1) to molecular magnets (S ∼ 10) to nanoclusters (S ∼ 100), and to classical
superparamagnetic particles (S ≥ 1000). In particular, the results so obtained could then be
compared with the asymptotic solutions yielded by quantum Kramers escape rate theory as
extended to spins for the purpose of establishing simple analytic formulae for the reversal
time as a function of S [47]. Thus one would have a complete quantum analogue of the
Brown theory of magnetization relaxation [50, 51]. Furthermore, the results could also be
compared as was previously done for the latter theory with suitable low temperature ex-
perimental observations of the escape rate and the associated susceptibilities of molecular
magnets, nanoclusters, etc. These results would also allow one to include spin size effects in
important technological applications of magnetic relaxation such as the reversal time of the
magnetization, the hysteresis and switching field curves, etc. In particular one could evalu-
ate the temperature dependence of the switching field curves and corresponding hysteresis
loops via obvious spin size corrected generalizations of the known classical methods used
in the analysis of the classical stochastic spin dynamics. The first steps in realization of this
program have been recently accomplished in Refs. [17, 56] in the particular application to
uniaxial superparamagnets. Results of its application to nonaxially symmetric spin systems
(such as a quantum superparamagnet in the field applied at an angle with the anisotropy axis,
etc.) will be published elsewhere.
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Appendix A: Derivation of (13)

In order to derive (13) for the reduced density matrix in the new coordinate system we must
express all operators occurring in the master equation in terms of that coordinate system. The
expression for the spin Hamiltonian in the new coordinate system is given by (12) while the
spin-bath interaction Hamiltonian ĤSB in that coordinate system is

ĤSB = −�γ

1∑

μ=−1

ĥ′μŜ ′
μ, (A.1)

where ĥ′0 = ĥ′
Z , and ĥ′±1 = ∓(ĥ′

X ∓ iĥ′
Y )/

√
2 are the (contravariant) spherical components

of the vector operator ĥ′† = (h′∗
+1, h

∗
0, h

∗
−1)

T = (h′+1, h′0, h′−1)T . Inserting the interaction
Hamiltonian into (4), we have the expansion of the double commutator in (5), i.e., the colli-
sion kernel in our new coordinate system which can be written as

St{ρ ′(t)} = γ 2
∫ ∞

0

{〈
ĥ′0(τ )ĥ′0〉[e

iτ
�

Ĥ ′
S Ŝ ′

0ρ̂
′(t)e− iτ

�
Ĥ ′

S , Ŝ ′
0

]

+ 〈
ĥ′0ĥ′0(τ )

〉[
Ŝ ′

0, e
iτ
�

Ĥ ′
S ρ̂ ′(t)Ŝ ′

0e
− iτ

�
Ĥ ′

S

]

+ 〈
ĥ′−1(τ )ĥ′+1

〉[
e

iτ
�

Ĥ ′
S Ŝ ′

+1ρ̂
′(t)e− iτ

�
Ĥ ′

S , Ŝ ′
−1

]

+ 〈
ĥ′+1(τ )ĥ′−1

〉[
e

iτ
�

Ĥ ′
S Ŝ ′

−1ρ̂
′(t)e− iτ

�
Ĥ ′

S , Ŝ ′
+1

]

+ 〈
ĥ′+1ĥ′−1(τ )

〉[
Ŝ ′

−1, e
iτ
�

Ĥ ′
S ρ̂ ′(t)Ŝ ′

+1e
− iτ

�
Ĥ ′

S

]

+ 〈
ĥ′−1ĥ′+1(τ )

〉[
Ŝ ′

+1, e
iτ
�

Ĥ ′
S ρ̂ ′(t)Ŝ ′

−1e
− iτ

�
Ĥ ′

S

]}
dτ. (A.2)

Here the angular braces denote bath correlation functions, namely

〈
ĥ′i (t1)ĥ′j (t2)

〉= Z−1
B TrB

{
ĥ′i (t1)ĥ′j (t2)ρ̂

eq

B

}
, (A.3)

where ĥ′μ(τ ) = eiĤBτ/�ĥ′μ(0)e−iĤBτ/� with index μ = 0,±1. Moreover, the cyclic property
of trace, Tr{ABC} = Tr{CAB}, along with the following properties of the bath correlation
functions (assuming axial symmetry about the Z′-axis and that the average of the white
noise caused by the Brownian motion of the bath, is zero, i.e., 〈ĥ′〉 = 0) have been used

〈ĥ′μ(t1)ĥ
′
ν(t2)〉 = 0, μ �= ν. (A.4)

Furthermore, the bath operators ĥ′μ, e±iĤBτ/�, ρ̂
eq

B commute with the system operators Ŝ ′
μ,

e±iĤSτ/�, ρ̂ ′ but (generally) not with one another. We emphasize that the properties (A.4)
are not valid in general for the coordinate system XYZ (the nonaxially symmetric problem)
because of the anisotropic properties of the system (in our case the fact that the uniform
field H is directed along the Z′ axis distinguishes this from the other axes X′ and Y ′).
Nevertheless, one can easily show that for an isotropic system

〈ĥ′μ(t1)ĥ
′
ν(t2)〉 = 〈ĥμ(t1)ĥν(t2)〉 = 0, μ �= ν.
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Now by substituting the Hamiltonian Ĥ ′
S in the rotated system (12) into (A.2) and taking

account of the operator identity (19), we can further simplify (A.2) to yield

St{ρ ′(t)} = γ 2
∫ ∞

0

{〈
ĥ′0(τ )ĥ′0〉[Ŝ ′

0ρ̂
′(t), Ŝ ′

0

] + 〈
ĥ′0ĥ′0(τ )

〉[
Ŝ ′

0, ρ̂
′(t)Ŝ ′

0

]

+ 〈
ĥ′−1(τ )ĥ′+1

〉
e

− iξτ
β�

[
Ŝ ′

+1ρ̂
′(t), Ŝ ′

−1

] + 〈
ĥ′+1(τ )ĥ′−1

〉
e

iξτ
β�

[
Ŝ ′

−1ρ̂
′(t), Ŝ ′

+1

]

+ 〈
ĥ′+1ĥ′−1(τ )

〉
e

− iξτ
β�

[
Ŝ ′

−1, ρ̂
′(t)Ŝ ′

+1

]

+ 〈
ĥ′−1ĥ′+1(τ )

〉
e

iξτ
β�

[
Ŝ ′

+1, ρ̂
′(t)Ŝ ′

−1

]}
dτ. (A.5)

Next in order to evaluate the averages of the noise terms, we introduce the one-sided
Fourier transforms of the (bath) time correlation functions (see, for example, [57], §6.4),
which can be defined as

C̃0
B(ω) = γ 2

∫ ∞

0

〈
ĥ′0(0)ĥ′0(τ )

〉
eiωτ dτ and C̃B(ω) = γ 2

∫ ∞

0

〈
ĥ′−1(0)ĥ′+1(τ )

〉
eiωτ dτ.

By noting the following property (�ω + El = Ek)

e−β�ω

∫ ∞

0

〈
ĥ+1(τ )ĥ−1

〉
eiωτ dτ

= Z−1
B e−β�ω

∫ ∞

0

∑

k,l

eiElτ/�h+1
lk e−iEkτ/�h−1

kl e−βEl eiωτ dτ

= Z−1
B

∫ ∞

0

∑

k,l

eiElτ/�h+1
lk e−iEkτ/�h−1

kl e−βEk eiωτ dτ

=
∫ ∞

0

〈
ĥ−1ĥ+1(τ )

〉
eiωτ dτ,

and assuming frequency independent damping, viz., [C̃0
B(ω) = C̃0∗

B (ω) → D‖ and C̃B(ω) =
C̃∗

B(ω) → D⊥] we then have from (A.5) the reduced density matrix evolution (13) in the
new coordinate system.

Appendix B: Phase Space Master Equation in Spherical Polar Coordinates

The deterministic operator of (36) can be presented in spherical polar coordinates as

i(L̂ · u†
H )WS = − sin(ϕ − ϕH ) sinϑH

∂WS

∂ϑ
+ [cosϑH − sinϑH cotϑ cos(ϕH − ϕ)]∂WS

∂ϕ
.

The collision kernel is separated into a “parallel”, St‖{WS}, and “perpendicular”, St⊥{WS},
parts. The parallel part of the collision kernel is

St‖{WS} = D‖
[

cosϑH

∂S‖

∂ϕ
− sinϑH

(
sin(ϕ − ϕH )

∂S‖

∂ϑ
+ cos(ϕ − ϕH ) cotϑ

∂S‖

∂ϕ

)]
,
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where

S‖ = cosϑH

∂WS

∂ϕ
− sinϑH

(
sin(ϕ − ϕH )

∂WS

∂ϑ
+ cos(ϕ − ϕH ) cotϑ

∂WS

∂ϕ

)
.

The perpendicular part of the collision kernel is

St⊥ {WS} = −D⊥
2

(
cos(ϕ − ϕH )

∂S⊥
1

∂ϑ
− sin(ϕ − ϕH ) cotϑ

∂S⊥
1

∂ϕ

)

− D⊥
2

[
cosϑH

(
sin(ϕ − ϕH )

∂S⊥
2

∂ϑ
+ cos(ϕ − ϕH ) cotϑ

∂S⊥
2

∂ϕ

)
+ sinϑH

∂S⊥
2

∂ϕ

]
,

where

S⊥
1 = (1 − eξ )

[
cosϑH cosϑ

(
cos(ϕ − ϕH )

∂WS

∂ϑ
− sin(ϕ − ϕH ) cotϑ

∂WS

∂ϕ

)

− cosϑH sinϑ

(
sin(ϕ − ϕH )

∂WS

∂ϕ
− 2S cos(ϕ − ϕH )WS

)

+ sinϑH

(
−2S cosϑWS + sinϑ

∂WS

∂ϑ

)]

− (1 + eξ )

[
cos(ϕ − ϕH )

∂WS

∂ϑ
− sin(ϕ − ϕH ) cotϑ

∂WS

∂ϕ

]

and

S⊥
2 = (1 − eξ )

[
cosϑ

(
sin(ϕ − ϕH )

∂WS

∂ϑ
+ cos(ϕ − ϕH ) cotϑ

∂WS

∂ϕ

)

+ sinϑ

(
cos(ϕ − ϕH )

∂WS

∂ϕ
+ 2S sin(ϕ − ϕH )WS

)]

− (1 + eξ )

[
cosϑH

(
sin(ϕ − ϕH )

∂WS

∂ϑ
+ cos(ϕ − ϕH ) cotϑ

∂WS

∂ϕ

)
+ sinϑH

∂WS

∂ϕ

]
.
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